In vitro anticandidal evaluation of novel highly functionalized bis cyclohexenone ethyl carboxylates.

نویسندگان

  • V Kanagarajan
  • M R Ezhilarasi
  • D Bhakiaraj
  • M Gopalakrishnan
چکیده

OBJECTIVES Novel highly functionalized bis cyclohexenone ethyl carboxylates 7-12 were designed, synthesized and their structures were elucidated by their elemental analysis, MS, FT-IR, one-dimensional 1H, and 13C NMR spectroscopic data. MATERIALS AND METHODS All the synthesized compounds 7-12 were tested for their in vitro antifungal activities against Candida sp. namely Candida albicans, Candida tropicalis, Candida glabrata, Candida parapsilosis, Candida dubliniensis and Candida krusei. RESULTS A close inspection of the in vitro anticandidal activity profile in differently electron withdrawing (-F, -Cl, and -Br) functional group and electron donating (CH3 and OCH3) substituted phenyl rings of novel highly functionalized bis cyclohexenone ethyl carboxylates 7-12 exerted strong anticandidal activity against all the tested Candida species. All the synthesized compounds 7-12 exhibited MIC value in the range of 6.25-200 μg/mL against all the tested Candida (C.) species. CONCLUSIONS Compound 8 against C. albicans, 9,11 against C. glabrata, 8,10 against C. parapsilosis, 7,9 against C. dubliniensis, 8,10 against C. krusei exhibited excellent anticandidal activity at a MIC value of 6.25 μg/mL. Likewise compound 7, 9-11 against C. albicans, 8, 9, 11 against C. tropicalis, 8 against C. glabrata, 9 against C. parapsilosis, 10 against C. dubliniensis, 9 against C. krusei revealed superior activity at a MIC value of 12.5 μg/mL.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STRUCTURAL EVALUATION OF THE ENZYMATIC RESOLUTION OF TRICYCLO[5.2.1.02,6]DECENE-2-CARBOXYLATES USING PIG’S LIVER ESTERASE

Moderate to excellent entantio- and stereoselectivities (ee’s 54-100%) were observed in PLE catalyzed hydrolysis of (±)-ethyl 5-oxo-endo-tricyclo[5.2.1.02,6] deca-8-ene-2-carboxylate 5 and the structurally related open chain bicyclic structures (±)-ethyl 3-acetylbicyclo[2.2.1]hept-5-ene-2-carboxylates 7, 9 and (±)-ethyl 3-propanoylbicyclo[2.2.1]hept-5-ene-2-carboxylates 8, 10. A pronounced pref...

متن کامل

Synthesis, Spectral Characterization, In-vitro Antibacterial and Antifungal Activities of Novel (2e)-Ethyl-2-(2-(2, 4-Dinitrophenyl) Hydrazono)-4-(Naphthalen-2-yl)-6-Arylcyclohex-3-Enecarboxylates

In a search for new leads towards potent antimicrobial agents, an array of novel (2E)-ethyl-2-(2-(2,4-dinitrophenyl)hydrazono)-4-(naphthalen-2-yl)-6-arylcyclohex-3-ene carboxylates 17-24 were synthesized and characterized through their melting point, elemental analysis, MS, FT-IR, one-dimensional NMR (1H, D2O exchanged 1H and 13C), two dimensional HOMOCOR and HSQC spectroscopic data. In-vitro m...

متن کامل

Synthesis, Spectral Characterization, In-vitro Antibacterial and Antifungal Activities of Novel (2e)-Ethyl-2-(2-(2, 4-Dinitrophenyl) Hydrazono)-4-(Naphthalen-2-yl)-6-Arylcyclohex-3-Enecarboxylates

In a search for new leads towards potent antimicrobial agents, an array of novel (2E)-ethyl-2-(2-(2,4-dinitrophenyl)hydrazono)-4-(naphthalen-2-yl)-6-arylcyclohex-3-ene carboxylates 17-24 were synthesized and characterized through their melting point, elemental analysis, MS, FT-IR, one-dimensional NMR (1H, D2O exchanged 1H and 13C), two dimensional HOMOCOR and HSQC spectroscopic data. In-vitro m...

متن کامل

Bis sulfamic acid functionalized magnetic nanoparticles as a retrievable nanocatalyst for the green synthesis of polyhydroquinolines and tetrahydrobenzopyrans

Synthesis of bis sulfamic acid-grafted on silica-coated nano-Fe3O4 particles (MNPs-TBSA) as a novel core/shell hybrid organic-inorganic magnetic nanostructures, and their performance as a retrievable heterogeneous acidic catalyst is disclosed. The catalytic performance of this novel material was studied for the green synthesis of pharmaceutically valuable polyhydroquinoline and tetrahydrobenzop...

متن کامل

Nano-BF3/cellulose as a biodegradable novel catalyst for synthesis of highly functionalized tetrahydropyridines

Nano-cellulose with high amount of free OH groups could be used as supporting agents for boron trifluoride (BF3). Nano-BF3/cellulose is a solid acid and a biodegradable catalyst which was prepared via reaction of nano-cellulose and BF3. The structure of this catalyst was studied by FT-IR, FESEM, TEM, XRD, EDS, TGA, XRF and BET. In this research, the synthesis of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European review for medical and pharmacological sciences

دوره 17 3  شماره 

صفحات  -

تاریخ انتشار 2013